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ABSTRACT

Brain-computer interfaces (BCIs) have been attracting attention as a research topic. BCI has 
various applications, such as at home and in the medical sector. BCI is an interconnection between 
the human brain and a computer, which is a communication pathway between external peripheral 
devices. Brainwave sensors play a significant role when applying BCIs in practice. In this study, 
data from such sensors are analyzed to classify the mental states of users. This study used two 
different brainwave sensors: Neurosky MindWave Mobile and Emotiv EPOC+. Several types of 
machine-learning techniques (support vector machine, random forest, and long short-term memory) 
have been applied to classify brainwave data. This study aimed to compare the accuracy of the two 
sensors, analyze data, and identify the most accurate machine-learning method. Finally, a BCI toy 
with MaBeee, which is a battery-type internet-of-things device, was designed as a BCI application 
that reflected the analysis results.

KeywoRdS
BCI, BCI Toy, EEG, IoT, LSTM, Machine Learning, Random Forest, SVM

1. INTRodUCTIoN

Brain–computer interfaces (BCIs), which can be applied in various areas, such as home use, robotics, 
and medical settings, have been widely investigated. BCIs represent an interconnection between the 
human brain and the computer and serves as a communication pathway between external peripheral 
devices. Previously, BCI was a complex term for non-researchers; furthermore, previously, specific 
equipment and environments required to measure the different states of the brain were not easily 
accessible. Over the past decade, portable and simplified electroencephalogram (EEG) sensors have 
been developed. An EEG is used to evaluate the electrical activity of the brain and is one of the 
most popular non-invasive techniques for recording brain activity. Currently, many EEG sensors 
are available, thus allowing BCIs to be investigated extensively. Examples include the operation of 
computers (Márquez et al., 2018) and web browsing applications (Halder et al., 2015), control of 
wheeled robots (Alsammarraie & Inan, 2022; Hiraishi, 2015) and robot arms (Ranky & Adamovich, 
2010), cognitive state analysis in sports (Hiraishi, 2021) and driving (Hiraishi, 2020), patient 
monitoring (Kumar et al., 2015), and some medical applications (Saravanarajan et al., 2021; Ting et 
al., 2021). Thus, many topics related to BCI in diverse areas have been reported.

Brainwave sensors play a significant role in BCI application, and the data from such sensors are 
analyzed to classify the mental states of users. Therefore, the authors used two different brainwave 
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sensors: Neurosky MindWave Mobile and Emotiv EPOC+. These sensors have been widely used 
in many studies, such as the ones mentioned above. Several types of machine-learning techniques 
have been applied to classify brainwave data. This study aimed to compare the accuracy of the two 
sensors, analyze the data, and identify the most accurate machine-learning technique. The following 
machine-learning methods were the focus of this study: the support vector machine (SVM), random 
forest, and long short-term memory (LSTM). SVM and random forest are among the most popular 
and effective methods to be proposed before the advent of deep learning. LSTM is a deep learning 
method—a type of recurrent neural network—and is advantageous in that it allows the analysis 
of time-series data such as brainwaves. These methods are typically used for brain data analysis 
(Costantini et al., 2009; Edla et al., 2018; Liao et al., 2018; Roy et al., 2019; Ting et al., 2021). That 
is the reason why they were selected in this study.

This study focused on three classes of mental states: “attention,” “meditation,” and “other.” The 
brainwave data for each class were obtained using each sensor from three subjects and then analyzed 
using each method. Subsequently, the characteristics of the brainwave sensors and mental state 
classifiers were clarified by comparing the accuracy of each combination. Finally, a BCI toy with a 
battery-type Internet-of-Things (IoT) device was designed as a BCI application to demonstrate the 
analysis results.

2. BRAINwAVe SeNSoRS

Figure 1 shows the two brainwave sensors adopted in this study, namely MindWave Mobile from 
NeuroSky Inc. (on the left) and EPOC+ from Emotiv Inc. (on the right), both of which are EEG sensors.

EEG scans are performed by placing small metal disks—known as EEG electrodes—on the scalp. 
These electrodes identify and record electrical activity in the brain. The obtained EEG signals are 
amplified, digitized, and then sent to a computer or mobile device for storage and data processing.

MindWave Mobile is an extremely simple and user-friendly sensor with a single channel, which 
comprises only two electrodes at the forehead and ear. The headset’s sensor measures the brain’s 
electrical activity between the forehead and ear; it transfers the data via Bluetooth to a computer, 

Figure 1. MindWave Mobile (left) and EPOC+ (right)
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smartphone, tablet, or laptop. This sensor has been adopted in several studies (Anwar, 2017; Donmez 
& Ozkurt, 2019; Hiraishi, 2020; Hiraishi, 2021).

EPOC+ is an advanced brainwave sensor comprising 16 electrodes and 14 channels. Similarly to 
MindWave Mobile, this sensor transfers data via Bluetooth to a computer and has been used in many 
studies (Das et al., 2014; Hooda et al., 2020; Ranky & Adamovich, 2010). This sensor is expected to 
achieve higher accuracy compared with other sensors. However, the pads of the electrodes must be 
dipped into a physiological salt solution and exchanged frequently.

EEG results characterize the neural activity in the human brain. The brain emits electrical signals 
that can be measured by placing an electrode in contact with the scalp. The resulting EEG readings 
initially comprise voltage measurements; subsequently, a spectral analysis of the measured data 
is performed to obtain the signal frequency. Table 1 lists the brainwaves extracted by each sensor. 
MindWave Mobile and EPOC+ can obtain eight and five types of brainwaves, respectively. Meanwhile, 
the sensor used in EPOC+ comprises 14 channels, and 5 brainwaves are measured at every channel; 
thus, 70 brainwave samples can be obtained. In this study, the software for sending brainwave data 
to a computer was programmed using the software library of each sensor. These data were sent every 
second and then stored in a CSV file.

3. MeNTAL STATe CLASSIFICATIoN

This section provides the analysis results of the mental state classification performed on the brainwave 
data, obtained using two brainwave sensors from three subjects. The data were analyzed using three 
machine-learning methods, namely SVM, random forest, and LTSM.

Most studies considered only two classes of mental states, such as attention and meditation, 
particularly when a sensor that adopts the brainwave-measurement module from NeuroSky, Inc., 
such as MindWave Mobile, was used. In addition to the brainwaves listed in Table 1, the sensor 
measures specific values of “attention” and “meditation” levels using an algorithm known as eSense 
(Neurosky, 2022). They are defined such that “attention” and “meditation” are associated with the 
generation of beta and alpha waves, respectively. However, the algorithm for calculating each value 
is not publicly available. Therefore, these parameters were not used in this study. The mental states 
of attention and meditation were classified based on brainwaves, as presented in Table 1. The three 
classes of mental states were defined as attention, meditation, and other. As reported by (Hiraishi, 
2015), a specific mental state is difficult to create intentionally. Therefore, the following tasks were 
conducted to create specific mental states:

Table 1. Brainwaves obtained by each sensor (The numbers in parentheses indicate the frequency for spectral analysis)

    MindWave Mobile     EPOC+

    Brainwaves     Delta (0.5–2.75 Hz)

    Theta (3.5–6.75 Hz)     Theta (4–8 Hz)

    lowAlpha (7.5–9.25 Hz)     Alpha (8–12 Hz)

    highAlpha (10–11.75 Hz)

    lowBeta (13–16.75 Hz)     lowBeta (12–16 Hz)

    highBeta (18–29.75 Hz)     highBeta (16–25 Hz)

    lowGamma (31–39.75 Hz)     Gamma (25–45 Hz)

    highGamma (41–49.75 Hz)
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• Attention: Solving calculation problems using a smartphone application.
• Meditation: Listening to ambient music.
• Other: Being idle; sitting on a chair.

The profiles of the three subjects are as follows:

• Subject A: Male student, Nepalese, 27 years old.
• Subject B: Male student, Nepalese, 26 years old.
• Subject C: Male student, Chinese, 25 years old.

Each subject executed three tasks using two sensors. Six experiments were performed for each 
subject, and each experiment lasted 4 minutes. Therefore, 240 datasets were obtained, and each dataset 
included the brainwave data of three mental states. In total, 180 datasets were used to generate the 
classification model, and 60 datasets of test data were used to evaluate the accuracy of the model. 
For data analysis, Waikato Environment for Knowledge Analysis (Weka)—a Java-based application 
developed at Waikato University (Srivastava, 2014)—was adopted in this study. Weka supports various 
methods of data analysis and machine learning, including SVM, random forest, and LSTM, and the 
same input file can be employed for performing analyses using these methods.

4. eXPeRIMeNTAL ReSULTS wITH MINdwAVe MoBILe

Figures 2–4 show the experimental results obtained via MindWave Mobile using SVM, random forest, 
and LSTM, respectively. Each graph indicates the change in the accuracy as the number of datasets 
increases. For the SVM, a linear kernel was used as it exhibited the best accuracy. The network of 
LSTM comprised two layers: an LSTM layer and an output layer. The number of nodes to connect 
these two layers was set to 10. The default settings of Weka were used for other settings.

Figure 2. Accuracy of MindWave Mobile and SVM
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Figures 2–4 show that the accuracy increased or stabilized gradually as the number of datasets 
increased. The accuracy varied as follows: it increased for datasets similar to the test data and decreased 
for dissimilar datasets. However, when a sufficient number of datasets was obtained, the model could 
manage various types of data, and the accuracy of the model stabilized. The results of SVM (Figure 
2) show that the accuracy decreased when the number of datasets was insufficient, and vice versa. 
Meanwhile, the accuracy of random forest (Figure 3) improved steadily as the dataset increased. 
LSTM (Figure 4) demonstrated a relatively higher accuracy even in the early stage. For all methods, 
the accuracy stabilized when approximately 120 datasets were used.

Figure 3. Accuracy of MindWave Mobile and random forest

Figure 4. Accuracy of MindWave Mobile and LSTM
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However, the overall accuracy was unsatisfactory. Although the highest accuracy of approximately 
70% was achieved by Subject C using random forest, the overall accuracy was less than 50%, whereas 
the SVM could not achieve 40%. Subsequently, two classes (attention and mediation) were identified 
by removing other data from the datasets obtained. Table 2 shows the average and standard deviation 
of the accuracy of the three subjects for 180 datasets in two classes and compares the data of three 
classes. Random forest showed the highest average value, whereas the SVM showed the lowest in 
both classes. By contrast, in terms of standard deviation, SVM exhibited the lowest value, whereas 
random forest exhibited the highest value for both classes. These results imply that the accuracy of 
SVM is low for all subjects, whereas that of random forest varies by the subject. However, random 
forest achieved an accuracy of approximately 70% in the two classes. This result is consistent with 
the findings of (Hiraishi, 2015), who performed a two-class analysis of the mental states for a robot 
controller. Although we analyzed three classes in our study, it can be assumed that MindWave Mobile 
can only manage two classes.

5. eXPeRIMeNTAL ReSULTS BASed oN ePoC+

Figures 5–7 show the experimental results for EPOC+ using the SVM, random forest, and LSTM, 
respectively, and each graph indicates the change in the accuracy as the number of datasets increases. 
The settings of each method were the same as before.

Table 2. Average and standard deviation of accuracy for MindWave Mobile (%)

Two Classes Three Classes

Average Standard 
Deviation

Average Standard 
Deviation

SVM 49.72 1.92 34.81 1.79

Random Forest 68.61 11.10 55.37 11.73

LSTM 55.00 3.82 38.52 4.17

Figure 5. Accuracy of EPOC+ and SVM
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Each graph shows that the accuracy improved as the number of datasets increased, where the 
trend presented is similar to that of MindWave Mobile. The accuracy of the SVM varied at the early 
stage (Figure 5). Random forest improved steadily (Figure 6), whereas LSTM stabilized in the early 
stage (Figure 7). In all cases, the accuracy exceeded 80% when approximately 120 datasets were used.

In the case of EPOC+, much higher accuracies than MindWave Mobile were achieved, as expected, 
for all three classes. Table 3 shows the average and standard deviation of accuracies for 180 datasets. 
All the average accuracies exceeded 85%. Random forest achieved an accuracy exceeding 97%, and 
the standard deviation was the lowest. This implies that random forest achieved higher accuracy for 
all subjects stably and was the best-performing method for EPOC+.

Figure 6. Accuracy of EPOC+ and random forest

Figure 7. Accuracy of EPOC+ and LSTM
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6. deSIGN oF BCI Toy

This section summarizes the results of the previous sections and presents the design of a BCI toy 
as an application that reflects the results. The analysis results of this study indicate that a complete 
operation could not be achieved using the brainwaves. The application of the BCI to critical operations 
is difficult. Therefore, a game or a toy that permits “operation miss” may be a suitable application of 
the BCI. In this study, an IoT device was used to realize a BCI toy. The design and operation of the 
BCI toy were compared between two sensors.

The BCI toy uses MaBeee (Figure 8), which is produced by Novars Inc. MaBeee is a battery-
type IoT device that can control the output voltage from an electronic device (such as a smartphone) 
via Bluetooth communication. The voltage was controlled from 0 to 100, where 0 implies 0 V and 
100 is the maximum voltage of the battery. A BCI toy can be created easily using MaBeee. In fact, 
it can operate any toy that operates with a battery using brainwaves, such as a car toy, a train toy, or 
an illumination toy, as shown in Figure 8.

Table 3. Average and standard deviation of accuracy for EPOC+ (%)

Average Accuracy Standard Deviation

SVM 87.41 5.01

Random Forest 97.04 1.16

LSTM 85.55 6.73

Figure 8. MaBeee and toys that operate using battery
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The results detailed in the previous sections are summarized as follows:

• Random forest is the best-performing machine-learning method in every aspect.
• Regarding MindWave Mobile, two-state analysis is a limitation for mental state classification.
• Regarding EPOC+, higher accuracies can be obtained for all three classes.
• The accuracy stabilizes when approximately 120 datasets are used.

For the design of the BCI toy, random forest was adopted as a data analysis method. For MindWave 
Mobile, mental states were classified into two classes: “attention” and “meditation”; for EPOC+, 
they were classified into three classes, the two classes mentioned earlier and “other.” The BCI toy 
generates a model on the spot (instead of using previously generated models) because it can achieve 
sufficient accuracy even when using a small dataset.

Figure 9. Application of BCI toy
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Figure 9 shows an Android smartphone application for the BCI toy. The first step in this application 
is data acquisition. A user selects the sensor that is being used, verifies “Attention,” “Meditation,” or 
“Other” (the last state can be verified only for EPOC+), and presses the “COLLECT DATA” button. 
Subsequently, the application begins to obtain data and subsequently generates a model automatically. 
The application obtained data for 30 s at a time and saves the data on a smartphone. After obtaining 
data repeatedly, the dataset can be expanded to generate a model for mental state classification. The 
saved data and generated model are removed by the “CLEAR DATA” button.

After generating the model, the BCI toy is operated. The “CONNECT MABEEE” button 
connects the application with MaBeee, and “MaBeee Level” indicates the output level of MaBeee. 
The following two execution modes can be selected.

• Attention Mode: The output of MaBeee is increased if the state is judged as “attention,” and 
decreased if the state is judged as “meditation.” The output does not change in the case of “other.”

• Meditation Mode: The output of MaBeee is increased if the state is judged as “meditation,” and 
decreased if the state is judged as “attention.” The output is not changed in the case of “other.”

For example, using the “Attention Mode,” a higher concentration increases the speed of the 
toy car during a game. For the train toy, the concentration shifts to the train during the game, and 
relaxation halts the train at a specific point, such as at a station. Meanwhile, an illumination toy can 
be operated using the “Meditation Mode,” and lighting is increased with more relaxation. Finally, a 
BCI toy is operated by pushing the “EXECUTION” button.

When operating a train toy in the “attention” mode in real-life experiments, operation is extremely 
difficult when using MindWave Mobile. Because this sensor only supports two classes, the state is 
always judged as attention or meditation. Therefore, the train always undergoes repeated acceleration or 
deceleration. Consequently, it is difficult to stably control the train. By contrast, in the case of EPOC+, 
a relatively stable operation is possible because of its higher accuracy and the “other” mental state.

As regards the BCI toy designed in this study, the operation becomes more stable if the data are 
obtained under stable mental states. In this case, the accuracy of the model will increase, which allows 
the users to achieve a specific mental state easily. Therefore, the operation of the BCI toy through 
brainwaves not only affords an entertaining aspect but also an appealing data acquisition method to 
generate a higher performance classification model.

7. CoNCLUSIoNS

In this study, two brainwave sensors—Neurosky MindWave Mobile and Emotiv EPOC+—were 
compared in the classification of three mental states. Data analysis was performed using three machine-
learning methods: SVM, random forest, and LSTM. Notably, the accuracy for the three classes was 
unsatisfactory when using MindWave Mobile; furthermore, it could support a maximum of only two 
classes. By contrast, EPOC+ demonstrated a significantly higher accuracy for three classes.

Results of the data analysis showed that the accuracy of the SVM varied when the number of 
datasets used was insufficient. The accuracy of the random forest improved steadily as more datasets 
were used. In addition, the LSTM demonstrated a relatively higher accuracy even at in the early stage. 
In all the cases, the accuracy stabilized when approximately 120 datasets were used. Random forest 
showed the best performance for every aspect.

Finally, a BCI toy was designed for application to reflect the analysis results. MindMobile is 
easy to use; however, its accuracy is unsatisfactory because it comprises only one channel, and only 
two-state classification is available. Therefore, MindWave Mobile is limited to simple operations, 
such as ON and OFF controls. Meanwhile, EPOC+ is time-consuming. In particular, the pads of the 
electrodes must be dipped into a physiological salt solution and then exchanged frequently. However, 
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for tasks that require detailed and varied operations, higher-channel brainwave sensors such as EPOC+ 
should be adopted.

ACKNowLedGMeNT

This research received no specific grant from any funding agency in the public, commercial or not-
for-profit sectors. The authors have no conflicts of interest to declare that are relevant to the content 
of this article.



International Journal of Artificial Intelligence and Machine Learning
Volume 12 • Issue 1

12

ReFeReNCeS

Alsammarraie, K., & Inan, T. (2022). Car control by using brain waves and Arduino based Mind wave mobile. 
2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 
1-6. doi:10.1109/HORA55278.2022.9799911

Anwar, D., Gupta, A., Naik, V., & Sharma, S. K. (2017). Detecting meditation using a dry mono-electrode 
EEG sensor. 9th International Conference on Communication Systems and Networks, 508-513. doi:10.1109/
COMSNETS.2017.7945444

Costantini, G., Todisco, M., Casali, D., Carota, M., Saggio, G., Bianchi, L., Abbafati, M., & Quitadamo, L. 
(2009). SVM classification of EEG signals for brain computer interface. Frontiers in Artificial Intelligence and 
Applications, 204, 229–233.

Das, R., Chatterjee, D., Das, D., Sinharay, A., & Sinha, A. (2014). Cognitive load measurement - A methodology 
to compare low cost commercial EEG devices. International Conference on Advances in Computing, 
Communications and Informatics, 1188-1194. doi:10.1109/ICACCI.2014.6968528

Donmez, H., & Ozkurt, N. (2019). Emotion classification from EEG signals in convolutional neural networks. 
2019 Innovations in Intelligent Systems and Applications Conference, 1-6.

Edla, D., Mangalorekar, K., Dhavalikar, G., & Dodia, S. (2018). Classification of EEG data for human mental 
state analysis using Random Forest Classifier. Procedia Computer Science, 132, 1523–1532. doi:10.1016/j.
procs.2018.05.116

Halder, S., Pinegger, A., Käthner, I., Wriessnegger, S., Faller, J., Pires, A. J., Müller-Putz, G., & Kübler, A. 
(2015). Brain-controlled applications using dynamic P300 speller matrices. Artificial Intelligence in Medicine, 
63(1), 7–17. doi:10.1016/j.artmed.2014.12.001 PMID:25533310

Hiraishi, H. (2015). Designing a robot controller by using a simple brain-wave sensor and a machine learning 
technique. Artificial Life and Robotics, 20(3), 217–221. doi:10.1007/s10015-015-0224-y

Hiraishi, H. (2020). Experience-based approach for cognitive vehicle research. International Journal of Software 
Science and Computational Intelligence, 12(4), 60–70. doi:10.4018/IJSSCI.2020100104

Hiraishi, H. (2021). Cognitive support tools for a pre-performance routine in a darts game. International Journal 
of Cognitive Informatics and Natural Intelligence, 15(4), 1–15. doi:10.4018/IJCINI.20211001.oa45

Hooda, N., Das, R., & Kumar, N. (2020). Cognitive control of robotic-rehabilitation device using Emotiv 
EEG headset. Proceeding of International Conference on Computational Science and Applications, 57-65. 
doi:10.1007/978-981-15-0790-8_7

Kumar, S., Kumar, V., & Gupta, B. (2015). Feature extraction from EEG signal through one electrode device 
for medical application. 1st International Conference on Next Generation Computing Technologies, 555-559. 
doi:10.1109/NGCT.2015.7375181

Liao, C.-Y., Chen, R.-C., & Tai, S.-K. (2018). Emotion stress detection using EEG signal and deep learning 
technologies. 2018 IEEE International Conference on Applied System Invention (ICASI), 90-93. doi:10.1109/
ICASI.2018.8394414

Márquez, B., Rojas, E., Soto, M., Ramirez, R. M., Moreno, H., & Nuñez, S. (2018). Controlling a computer 
using BCI, by blinking or concentration. Proceedings of the 2018 International Conference on Algorithms. 
Computers and Artificial Intelligence, 8, 1–6.

Neurosky. (2022). What is eSense? http://support.neurosky.com/kb/science/what-is-esense

Ranky, G. N., & Adamovich, S. (2010). Analysis of a commercial EEG device for the control of a robot 
arm. Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, 1-2. doi:10.1109/
NEBC.2010.5458188

Roy, Y., Banville, H. J., Albuquerque, I., Gramfort, A., Falk, T., & Faubert, J. (2019). Deep learning-
based electroencephalography analysis: A systematic review. Journal of Neural Engineering, 16(5), 1–37. 
doi:10.1088/1741-2552/ab260c PMID:31151119

http://dx.doi.org/10.1109/HORA55278.2022.9799911
http://dx.doi.org/10.1109/COMSNETS.2017.7945444
http://dx.doi.org/10.1109/COMSNETS.2017.7945444
http://dx.doi.org/10.1109/ICACCI.2014.6968528
http://dx.doi.org/10.1016/j.procs.2018.05.116
http://dx.doi.org/10.1016/j.procs.2018.05.116
http://dx.doi.org/10.1016/j.artmed.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25533310
http://dx.doi.org/10.1007/s10015-015-0224-y
http://dx.doi.org/10.4018/IJSSCI.2020100104
http://dx.doi.org/10.4018/IJCINI.20211001.oa45
http://dx.doi.org/10.1007/978-981-15-0790-8_7
http://dx.doi.org/10.1109/NGCT.2015.7375181
http://dx.doi.org/10.1109/ICASI.2018.8394414
http://dx.doi.org/10.1109/ICASI.2018.8394414
http://support.neurosky.com/kb/science/what-is-esense
http://dx.doi.org/10.1109/NEBC.2010.5458188
http://dx.doi.org/10.1109/NEBC.2010.5458188
http://dx.doi.org/10.1088/1741-2552/ab260c
http://www.ncbi.nlm.nih.gov/pubmed/31151119


International Journal of Artificial Intelligence and Machine Learning
Volume 12 • Issue 1

13

Saravanarajan, V. S., Chen, R.-C., Saravanarajan, N. A., Liu, M.-Z., Lin, C.-Y., & Chen, L.-S. (2021). Effect 
of different genres of music on brain waves. 2021 Emerging Trends in Industry 4.0 (ETI 4.0), 1-5. 10.1109/
ETI4.051663.2021.9619270

Srivastava, S. (2014). Weka: A tool for data preprocessing, classification, ensemble, clustering and association 
rule mining. International Journal of Computers and Applications, 88(10), 26–29. doi:10.5120/15389-3809

Ting, Y. W., Zhang, Y. J., Chung, K. H., & Chang, Y. S. (2021). Implementation of a deep learning model for 
emotion evaluation based on LSTM psychological and physiological data. 2021 International Automatic Control 
Conference (CACS), 1-5. doi:10.1109/CACS52606.2021.9639060

Hironori Hiraishi received his BS degree in 1993, his MS degree in 1996, and a Ph.D. in 1999 in information 
technology from Tokyo University of Science. He was a research associate of Information Media Center in Tokyo 
University of Science from 2000 to 2005, chief technological officer of WisdomTex, Inc. from 2001 to 2009, an 
associate professor of department of electrical and computer engineering in National Institute of Technology, Akita 
College from 2010 to 2016, and an associate professor of faculty of engineering in Ashikaga Institute of Technology 
from 2017 to 2019. He has been a professor of faculty of engineering in Ashikaga University since 2020. He 
received the winning award on the Innovative Application conference (IAAI2003), and the best paper award twice 
on the Cognitive Informatics and Cognitive Computing conference (ICCI*CC2011 and ICCI*CC2017). His recent 
research interests have focused on the applications integrating with human cognitive aspects and AI technologies.

http://dx.doi.org/10.5120/15389-3809
http://dx.doi.org/10.1109/CACS52606.2021.9639060

